Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 17(6): 930-943, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31850900

RESUMO

Multi-drug resistance traits of Staphylococcus species especially methicillin-resistant Staphylococcus aureus (MRSA) in the clinical settings are well established. Of environmental concern is hospital effluents discharging into wastewaters. This article investigated the prevalence and detection of antibiotic resistance genes in Staphylococcus species from clinical and environmental sources in Ile-Ife, Nigeria. Standard culture-based and molecular protocols were used. Seventy-six (27 clinical, 14 hospital effluent and 35 environmental) Staphylococcus isolates were recovered: 56.58% were coagulase-negative and 43.42% coagulase-positive (S. aureus). For the clinical isolates, 10, 6, 4, 4 and 1 were isolated from urine, skin, wounds, blood and pus, respectively. Isolates were resistant to methicillin and amoxycillin (91.7%), cloxacillin (88.0%), ciprofloxacin (84.0%), ofloxacin (83.3%), azithromycin (78.0%), ceftazidime (76.0%), gentamycin (75.0%), cefuroxime (75.0%) and erythromycin (72.0%). Nearly, all isolates (90.8%) had multiple antibiotic resistance (MAR) index >0.2. Overall MAR indices for Staphylococcus species isolated from the clinical, hospital effluent and environmental wastewaters were relatively similar (0.482; 0.500; 0.435). mecA, nuc and luk-pvl genes were detected in S. aureus, while mecA was detected in S. arlettae, S. sciuri, S. cohnii, S. epidermidis and S. saprophyticus. This study informs on the potential contamination of environmental waters downstream from hospitals and possible impacts that this could have on human and animal health.


Assuntos
Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Animais , Antibacterianos/uso terapêutico , Resistência a Múltiplos Medicamentos , Microbiologia Ambiental , Humanos , Meticilina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nigéria , Staphylococcus/classificação , Staphylococcus/isolamento & purificação , Staphylococcus aureus/isolamento & purificação
2.
Ecotoxicology ; 28(1): 37-47, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30430303

RESUMO

Soil microorganisms exhibit varying levels of metal tolerance across a diverse range of environmental conditions. The use of metal-based fungicides such as mancozeb and copper oxychloride could potentially result in increased levels of manganese, zinc and copper which may adversely affect soil mesofauna. Under standardized earthworm bioassay conditions (temperature, pH, soil type and water content), we investigated the effect of Bacillus cereus on mancozeb and copper oxychloride ecotoxicity towards Eisenia andrei. A metal-tolerant Bacillus cereus strain previously isolated from a gold mining site was introduced into fungicide spiked soils. Earthworms were exposed to bacterial inoculated and non-inoculated substrates of mancozeb (8, 44, 800 and 1250 mg kg-1) and copper oxychloride (200, 450, 675 and 1000 mg kg-1). Experimental trials assessed avoidance-behavior, growth and reproduction utilizing standardized protocols (ISO and OECD). In the avoidance-behavior, E. andrei showed significant (p< 0.05) preference for inoculated substrates. Further, significant (p< 0.05) increases in biomass, survival, cocoons, juveniles and lower soil and tissue Mn, Cu and Zn contents were recorded at 8 and 44 mg kg-1 mancozeb and copper oxychloride 200 and 450 mg kg-1 inoculated soils compared to non-inoculated. However, at 800 and 1250 mg kg-1 mancozeb and 675 and 1000 mg kg-1 copper oxychloride concentrations, reproductive success in both inoculated and non-inoculated treatments was negatively (p< 0.05) affected. In conclusion, Bacillus cereus decreased the ecotoxicity of metal-based fungicides towards Eisenia andrei at 8 and 44 mg kg-1 mancozeb and 200 and 450 mg kg-1 copper oxychloride concentrations. The outcome observed with the inoculated substrates at elevated fungicides concentrations maybe as a result of the environmental conditions (pH and temperature).


Assuntos
Bacillus cereus/fisiologia , Cobre/toxicidade , Fungicidas Industriais/toxicidade , Maneb/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Zineb/toxicidade , Animais , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...